FACULTY OF SCIENCE

Max Marks: 80
Time: 3 Hours
(Circuit Analysis)

SECTION-A

(Short Answer Type)
($4 \times 5=20$ Marks)
Answer any Four questions from the following

1. How can you express a complex numbers in polar and rectangular forms?
2. Explain KVL with the help of a single source network.
3. By applying $K C L$ find the values of branch currents I and I_{1} for the circuit shown below.

4. Briefly explain Millman's theorem.
5. Given circuit is,

Find $V_{o c}, R_{T h}$ and I_{0}, using Thevenin's theorem.
6. Discuss any one Low pass filter.
7. Define band width, Q- factor and selectivity.
8. What is the need for time base in a CRO?

SECTION-B

(Essay Answer Type)
Answer the following questions
9. (a) Define RMS value and Average Value. Derive expression for average value of a sinusoidal signal over a half cycle.
(OR)
(b) Explain the concept of ideal and practical current sources and discuss their V-I characteristics.
10. (a) State and prove Norton's theorem and explain how a Norton's equivalent circuit is related to thevenin's equivalent circuit.
(OR)
(b) State and prove superposition theorem. Explain how it can be usefully employed in a network.
11. (a) What is a differentiator? Draw the circuit of a differentiator and obtain its output expression. Draw its input and corresponding output wave forms.
(OR)
(b) In detail explain the transiet response of RC-Circuit.
12. (a) Obtain an expression for the impedance of a series RLC circuit at resonance and explain
Voltage Magnification.

(OR)

- (b) Explain the construction and working of a CRT.

